

Dynamic Lava Shader

Game Lab - Raymond Becking 500785471

Moodboard: ​https://app.milanote.com/1JeF4m1v9QV5e9

https://app.milanote.com/1JeF4m1v9QV5e9

Parallax Occlusion Mapping 3

Parallax map 3
Parallax Occlusion Map 4

Emission Map 5

Distortion Effect 6

Flowmap 9

Tiling 10

Parallax Occlusion Mapping
My idea for this shader was to make a lava shader with proper normal/height(parallax) mapping
for realism and depth. In my final product I used the following techniques: Parallax Occlusion
Mapping, Emission map, Distortion Post Processing effect, Flowmap and Tiling(for POM).

Parallax map
To create a parallax shader I started on
creating a surface shader.
The parallax effect based on the heightmap
combined with a normal map gives an
alright looking effect. heightTex contains the
height of the texture(of a single pixel) based
on a grayscale image. The height is then
used to calculate the parallax offset using a
built-in unity parallax function from UnityCG.cginc. The calculated offset is used to adjust the uv
of the main texture & the normal texture. In my case the parallaxOffset for the MainTex is not
actually necessary since my main texture does not have a lot of detail, and is mostly a uniform
color. But since some do, I included it in case I want to
reuse this shader. To implement the ParallaxOffset
function I followed an article by ​Alisavakis(2019).

This ParallaxOffset function however is very simple if we
peek inside UnityCG.cginc. This function simply changes
the height and normalizes this towards the view direction.
The problem with this simple parallax function is visible if
we look at the shader from a different angle, a lot of artifacts
can be seen(image on the right). The reason for this is
because the camera is actually looking at a flat plane, the
wrong vertexes are seen if the camera is at an angle.

To visualise the problem with this simple parallax map,
I’ve drawn what causes the artifacts.
The reason this effect looks correct from the top, is that
the camera actually sees the correct vertex (cam A). But
if we look at it from an angle (cam B) we see vertex C
since we’re looking at a flat plane, instead of the vertex
we should be seeing (vertex D). To solve this problem
I’ve implemented Parallax Occlusion Mapping. This

problem is explained in the POM ​interpretation by Zink (2013).

Parallax Occlusion Map
First we need to transform the vertex vectors to tangent
space. This is to make sure everything uses the same unit
system (this is because we need height & normal
information at each pixel point).

These transformations are done in a function (cginc file)
which is called by the vert function of the shader to
transform the proper coordinates.

The next part is to calculate the offset from the
surface function.

To do this we first setup some default values, the
maximum parallax offset, stepsize based on
amount of samples and the change of surface
geometry (ddx, ddy). Then to find the intersection
of the eye vector with the heightmap (the place
we’re supposed to see, vertex D from the drawing
above) we keep looping until it is found. Or until
the current sample checked exceeds the amount
of samples defined by the user. The less max
samples the less steps are taken to find the
intersection. When the height of the taken sample
exceeds the height of the ray, it means the sample
has gone past(below) the intersection. Then we
take a point in between the last and current sample
to approximate the intersection. Fewer samples will cause a less accurate approximation of the
intersection and will cause imperfections and a less smooth surface.

It won’t look perfect even with a lot of samples, but anti-aliasing should clean the rugged edges.
When the intersection is found, the loop breaks and the offset is returned and the texture will be
moved accordingly. This way the camera sees the surface of vertex D instead of vertex C
(drawing above).

If there is no intersection found we lower the ray and move the offset to keep checking. This is
how the POM looks:

To create POM I used a SIGGRAPH presentation by ​Tatarchuk (2006) and an interpretation
by Zink (2013).

Emission Map
The lava still looks a bit dull. What this shader is missing is emission, this will give the light parts
a lot more glow and make the solidified parts darker. To make use of the emission map, we
need to add a shader feature to the #pragma:

By using this, light intensity will now have an
effect on the shader based on the emission map.
In my case I used the same texture for the albedo and the emission map, this way the effect
gives a nice glow. The next step is to get the emission texture and add it to the maintexture
color. By multiplying this with an
adjustable color we can change the hue
of the lava to make it more colorful if
needed.

We can also add some metallic and gloss to
the shader to allow more adjustments:

After tweaking some values, we get vibrant/colorful lava:

Implementing a emission map was done using a tutorial by Flick (2019).

Distortion Effect
While it definitely looks warm, we want to make it look more dangerous and hot. We can make it
look like its emitting heat by creating a distortion effect above the lava. To make use of Unity
Post-processing stack V2, this default Unity Post Processing package can be added in the
packages window. To use the Post-processing stack V2 I followed a tutorial on how to
implement a custom distortion effect (​Makin’ Stuff Look Good, 2019)

We can’t just distort the screen, since post processing effects are 2D it will just distort anything
on screen with no relation to space. We do want to distort the screen, but only in certain areas

for a certain amount of blur. We could do this by implementing a particle system that creates
particles that can be used for blurring, since particles are usually 2d anyways.

Since we want to create
multiple blur effects(for
each particle), we should
create something to
manage all these effects.
We also want to be able to
add these effects to the
post processing stack.
DistortionManager:
Using a list of distortion
effects, each distortion
effect is added to the
rendering pipeline using a
command buffer. The
command buffer allows
extending the rendering pipeline.

The DistortionEffect is a MonoBehaviour class that we
can attach to the particle system to get the material and
renderer and register them as distortion effects using the
manager class above. We can also disable the actual
(particle) renderer since we don’t actually need to see the
particle as we’re just using it to distort the image.
Now that we have listed what needs to be a distortion
effect, we need to create the actual effect. We want to
cover the whole area with heat waves, so using the
particle system we can cover the complete area with
particles. Using a custom shader we can change the look
of the particles. We’ll also need some zCulling to prevent the shader from distorting objects in
front of the particles.

First we need to sample the particles, which in my
case is a normal map. I’ll be using a smoke normal
map. To use these normal map values, we have to
unpack the normal map first. Then we can use the
alpha of the texture to amplify the strength of the
distortion.

To prevent the distortion effect from being drawn over objects in front of the lava we need to use
zculling. To do custom zculling, we calculate the distance (eyedepth) to the particle in the vertex

shader. Then in the fragment shader we remap the sampled camera depth texture by decoding
it to get the depth of the
scene. Now we can compare
the distance and check if
there is something in front of
the distortion particle. When
the depth of the scene is greater than the depth to the particle (particle is in front of object in
scene) the particle should be drawn.

Now that we have the “distortion” particle set up, we can use this to create the actual distortion
itself. We do this by using the normal map particle that was set up earlier and using the
(xy)texelsize of the screen
to magnify the change of
color(based on the moving
normal map).

Now we need to apply this to each
particle that was added to the
distortion list in DistortionManager
and render this to the screen. We
call the distortionmanager to add
the effects to the command buffer.
We finally blit the source to the
destination in the command buffer
using the distortion shader (sheet)
to transform the screen to the screen with distortions.

Flowmap
To implement a flowmap I used a tutorial
by Flick (2019).
To create directional movement we create
a function to move the uv over time. We
can use this function to set our own
direction and pass the rotation matrix to
make sure the Parallax Occlusion Map is
corrected if the uv has rotated.

We then use this function to create a grid with cells that each have their own directional flow.
Here we sample the flowmap to use as the flowvector to make sure each cell moves in the
correct direction.

The next step is to use the cell offset
to make sure the change in direction
is aligned. This is where problems
occurred, aligning the texture(using
celloffset) caused stretching in
extreme changes in direction. On the
right I set different offsets for the tiled
uvs. Without aligning the texture it is
very obvious where the texture is cut off to
flow into a different direction. This stopped me from completing this feature; see the images
below for flow with and without alignment:
With alignment of flow: Without alignment of flow:

There were no examples of someone implementing a flowmap with POM, the only thing i had as
inspiration was a forum post by ​mouurusai (2019).
As a temporary solution, I added a slider to the shader where the direction can be set manually.
I also added clockwise and counter-clockwise rotations that can be turned on or off.

Tiling
To allow for different sizes of meshes & planes, I added a way to tile the texture in both the x
and y direction. I also added the offset. I thought this feature was finished and didn’t look at it
too much, later I found out that rotating the plane/mesh breaks the tiling. It was too late to find a
fix for this, so I commented it
out.

When the mesh/plane is not
rotated (0,0,0) it works correctly so use at own risk.

As a final scene I used a demo scene from: the Top-down Asset pack by ​Manufactura K4
5(2019)​.
The final result looks like this:

Reference List.
Alisavakis, H. (2019, February 21). My take on shaders: Parallax effect (Part I) – Harry
Alisavakis. Retrieved from
https://halisavakis.com/my-take-on-shaders-parallax-effect-part-i/

Flick, J. (2016, October 31). Rendering 9. Retrieved from
https://catlikecoding.com/unity/tutorials/rendering/part-9/

Flick, J. (2018, June 29). Directional Flow. Retrieved from
https://catlikecoding.com/unity/tutorials/flow/directional-flow/

Makin’ Stuff Look Good. (2019, April 1). ​Shaders Case Study - Distortion FX with Unity’s
Post-processing Stack v2​ [Video file]. Retrieved from
https://www.youtube.com/watch?v=xH5uUfeB2Go

mouurusai. (2019, November 12). flow map + parallax map [Forum Post]. Retrieved
from https://forum.unity.com/threads/flow-map-parallax-map.776573/

n00body. (2015, January 2). [SOLVED] Detail mapping + Parallax = Texture
Swimming? [Forum Post]. Retrieved from
https://www.gamedev.net/forums/topic/664276-solved-detail-mapping-parallax-texture-s
wimming/

Tatarchuk, N. (2006, March 14). Practical Parallax Occlusion Mapping For Highly
Detailed Surface Rendering [Slides]. Retrieved from
https://developer.amd.com/wordpress/media/2012/10/Tatarchuk-POM.pdf

Zink, J. (2013, August 9). A Closer Look At Parallax Occlusion Mapping. Retrieved from
https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/a-close
r-look-at-parallax-occlusion-mapping-r3262/

Manufactura K4 5. (2013, June 13). ​Top-Down Caves​. Retrieved from
https://assetstore.unity.com/packages/3d/environments/dungeons/top-down-caves-3912
4

